Probing the quantum structure of spacetime using a cosmic cataclysm

> Javier Rico Institut de Física d'Altes Energies, Barcelona

After: "Bounds on Lorentz invariance violation from MAGIC observation of GRB 190114C", The MAGIC Collaboration, Phys. Rev. Lett. 125 (2020) 021301

Why we want to do that

A. Einstein

M. Planck

Why we want to do that

A. Einstein

M. Planck

To find a quantum theory of Gravity

Quantum nature of spacetime

LPlanck

1111111111

What we measure in practice

* Gamma-ray Bursts (GRBs) = cosmic explosions from massive star collapse or neutron star merger

* A typical GRB releases as much energy in a few seconds as the Sun will in its entire 10-billion-year lifetime

Measuring time of flight differences

E₁

 $E_2 > E_1$

Measuring time of flight differences

Δt

E₁

 $E_2 > E_1$

J. Rico - IFAE

J. Rico - IFAE

How we measure GRBs: the MAGIC telescopes

2 x 17m diameter gamma-ray telescopes Roque de los Muchachos observatory, La Palma

THE!

* T_o = 20:57:03 UTC on the 14th January 2019

- * MAGIC started observations 57 seconds later
- * MAGIC measured 877 gamma rays in 20 min
- * First time high-energy gamma-rays observed from a GRB
- * Distance: d = 4500 million lightyears

- * T₀ = 20:57:03 UTC on the 14th January 2019
- * MAGIC started observations 57 seconds later
- * MAGIC measured 877 gamma rays in 20 min
- * First time high-energy gamma-rays observed from a GRB
- * Distance: d = 4500 million lightyears

- * To = 20:57:03 UTC on the 14th January 2019
- * MAGIC started observations 57 seconds later
- * MAGIC measured 877 gamma rays in 20 min
- * First time high-energy gamma-rays observed from a GRB
- * Distance: d = 4500 million lightyears

- * To = 20:57:03 UTC on the 14th January 2019
- * MAGIC started observations 57 seconds later
- * MAGIC measured 877 gamma rays in 20 min
- First time high-energy gamma-rays observed from a GRB
- * Distance: d = 4500 million lightyears

- * To = 20:57:03 UTC on the 14th January 2019
- * MAGIC started observations 57 seconds later
- * MAGIC measured 877 gamma rays in 20 min
- First time high-energy gamma-rays observed from a GRB
- * Distance: d = 4500 million lightyears

* No time delay for high-energy gammas was observed

* No time delay for high-energy gammas was observed

* First high-energy photon was observed at T_0+74 s

* No time delay for high-energy gammas was observed

- * First high-energy photon was observed at T_0+74 s
- * ∆t ≤ 74s

- * No time delay for high-energy gammas was observed
- * First high-energy photon was observed at T_0+74 s
- * ∆t ≤ 74s
- * Remember $\Delta t = f(\Delta E, d, L_c)$

- * No time delay for high-energy gammas was observed
- * First high-energy photon was observed at T_0+74 s
- * ∆t ≤ 74s
- * Remember $\Delta t = f(\Delta E, d, L_c)$
- * Then we obtain: $L_c \leq 1.6 L_{Planck}$

- * Catching more distant GRBs
- * Catching even higher energies from those GRBs
- * Catching the GRB prompt emission with rich time structure

* Catching more distant GRBs

- * Catching even higher energies from those GRBs
- * Catching the GRB prompt emission with rich time structure

* Catching more distant GRBs

* Catching even higher energies from those GRBs

* Catching the GRB prompt emission with rich time structure

- * Catching more distant GRBs
- * Catching even higher energies from those GRBs
- * Catching the GRB prompt emission with rich time structure

